[bookmark: _lt09y1tx20xt]Инструкция по установке экземпляра программного обеспечения
Экземпляр ПО, предоставленный для проведения экспертной проверки
[bookmark: _hdhbpmp39nq5]1. Общие сведения
[bookmark: _1zofp6l7mo9t]1.1. Назначение документа
Настоящая инструкция описывает порядок развертывания и первичной настройки экземпляра программного обеспечения Аналитическая информационная система “Умный город” (АИС “Умный Город”), предоставленного для проведения экспертной проверки. Экземпляр предоставляется экспертам в виде развернутого демо-стенда с доступом по сети Интернет (через веб-браузер). Самостоятельная установка экспертами не требуется; инструкция предназначена для подтверждения воспроизводимости установки и для специалистов, обслуживающих демо-стенд со стороны разработчика.
[bookmark: _lm2o4wrvgyvc]1.2. Состав программного обеспечения
Приложение включает 2 независимых блока:
1. Backend — серверная часть на Laravel, разворачивается в Docker с использованием Docker Compose.
2. Frontend — клиентское приложение Vue 3 + Quasar, тип SPA.
Взаимодействие компонентов:
· Frontend обращается к Backend по HTTP(S) к API.
· Backend использует СУБД PostgreSQL/PostGIS.

[bookmark: _216golwshi2]2. Требования к системе и инфраструктуре
[bookmark: _hnuqx656bifu]2.1. Требования к серверу демо-стенда (минимальные)
· CPU: 4 vCPU
· RAM: 4 GB
· Диск: от 120 GB свободного пространства (с учетом БД и загружаемых файлов)
· Сеть: доступ к демо-стенду по входящему HTTP/HTTPS
При активной загрузке подтверждающих документов рекомендуется увеличивать диск и/или подключать отдельное хранилище.
[bookmark: _en7c5xjh09v]2.2. Требования к операционной системе
· Linux (рекомендовано: Ubuntu 22.04 LTS или совместимая ОС)
[bookmark: _387s2rz6bqzf]2.3. Требования к системному ПО
· Docker Engine
· Docker Compose (v2)
· Git
[bookmark: _gqey1m2tlw4v]3. Сетевая схема и порты
[bookmark: _k0ce9tr3idcf]3.1. Порты backend-части (по конфигурации демо-стенда)
В составе Docker Compose используется Nginx-контейнер web с пробросом порта:
· 8000:8000 (вход в backend через Nginx)
Фактический внешний порт может отличаться в зависимости от окружения демо-стенда (reverse proxy, балансировщик и т.п.), но общая логика остается:
· внешний HTTP(S) → reverse proxy (опционально) → контейнер web → контейнер app → pgsql
[bookmark: _cdvpu3t97eey]3.2. Порты базы данных
Контейнер pgsql публикует порт:
· ${FORWARD_DB_PORT:-5432}:5432
[bookmark: _a3a1sh4evwhx]4. Backend: развертывание (Laravel + Docker Compose)
[bookmark: _d7okol2uow0t]4.1. Состав контейнеров
Backend разворачивается как набор сервисов в Docker Compose:
· app — PHP/Laravel приложение (контейнер iq-city-api)
· web — Nginx reverse proxy для backend (контейнер nginx_web)
· pgsql — PostgreSQL/PostGIS (образ postgis/postgis:17-3.5)
· сеть iq-sc-net (bridge)
· том sail-pgsql для данных БД
[bookmark: _62tpkq50d8ws]4.2. Docker Compose конфигурация (фрагмент)
Экземпляр backend разворачивается с использованием следующей конфигурации Docker Compose:
services:
 app:
 build:
 context: .
 dockerfile: ./docker/app/stage.Dockerfile
 args:
 WWWGROUP: '${WWWGROUP}'
 extra_hosts:
 - 'host.docker.internal:host-gateway'
 environment:
 WWWUSER: '${WWWUSER}'
 XDEBUG_MODE: '${SAIL_XDEBUG_MODE:-off}'
 XDEBUG_CONFIG: '${SAIL_XDEBUG_CONFIG:-client_host=host.docker.internal}'
 IGNITION_LOCAL_SITES_PATH: '${PWD}'
 volumes:
 - .:/var/www/html/
 networks:
 - iq-sc-net
 depends_on:
 - pgsql
 restart: unless-stopped
 container_name: iq-city-api

 web:
 image: nginx:alpine
 container_name: nginx_web
 ports:
 - '8000:8000'
 volumes:
 - .:/var/www/html
 - ./docker/nginx/stage.conf:/etc/nginx/conf.d/default.conf
 depends_on:
 - app
 networks:
 - iq-sc-net
 dns:
 - 10.176.201.210
 - 10.176.201.211
 restart: unless-stopped

 pgsql:
 image: 'postgis/postgis:17-3.5'
 ports:
 - '${FORWARD_DB_PORT:-5432}:5432'
 environment:
 POSTGRES_DB: '${DB_DATABASE}'
 POSTGRES_USER: '${DB_USERNAME}'
 POSTGRES_PASSWORD: '${DB_PASSWORD:-secret}'
 volumes:
 - 'sail-pgsql:/var/lib/postgresql/data'
 - './vendor/laravel/sail/database/pgsql/create-testing-database.sql:/docker-entrypoint-initdb.d/10-create-testing-database.sql'
 networks:
 - iq-sc-net
 healthcheck:
 test:
 - CMD
 - pg_isready
 - '-q'
 - '-d'
 - '${DB_DATABASE}'
 - '-U'
 - '${DB_USERNAME}'
 retries: 3
 timeout: 5s
 restart: unless-stopped

networks:
 iq-sc-net:
 driver: bridge

volumes:
 sail-pgsql:
 driver: local

[bookmark: _wkz0pk7a7g6p]4.3. Подготовка переменных окружения backend
Перед запуском требуется определить переменные окружения (обычно в файле .env в корне backend-проекта).
Минимально необходимы:
· DB_DATABASE — имя БД
· DB_USERNAME — пользователь БД
· DB_PASSWORD — пароль БД
· FORWARD_DB_PORT — (опционально) внешний порт БД
· WWWUSER, WWWGROUP — параметры пользователя/группы внутри контейнера (если применимо)
Рекомендуется:
· отключить отладочные режимы на демо-стенде (APP_DEBUG=false, XDEBUG_MODE=off), если демо-стенд доступен извне.
[bookmark: _eidt783ohdjn]4.4. Запуск backend-экземпляра
1. Разместить исходный код backend в каталоге развертывания (например, /opt/iqcity/backend).
2. Перейти в каталог проекта, где расположен docker-compose.yml.
3. Выполнить запуск:
· docker compose up -d
4. Проверить состояние:
· docker compose ps
5. Проверить логи (при необходимости):
· docker compose logs -f --tail=200
[bookmark: _scnc4g2szmi5]4.5. Развертывание базы данных и начальное наполнение
(выполнение миграций и seed внутри контейнера приложения)
[bookmark: _ytjc0v3bwo7k]4.5.1. Назначение этапа
Данный этап обеспечивает:
· создание структуры базы данных;
· наполнение базы начальными (seed) данными;
· подготовку демо-стенда к проведению экспертной проверки.
Формирование базы данных выполняется специалистами разработчика в процессе развертывания демо-стенда.
[bookmark: _a5e1gbr9dnm0]4.5.2. Инициализация контейнера базы данных
В составе backend-части используется контейнер базы данных:
· СУБД: PostgreSQL с расширением PostGIS;
· образ: postgis/postgis:17-3.5;
· хранение данных: постоянный Docker volume sail-pgsql.
Контейнер базы данных запускается автоматически при старте Docker Compose и после прохождения healthcheck готов к подключению backend-приложения.
[bookmark: _gqjclsdhaq2p]4.5.3. Формирование структуры и данных базы данных
Создание структуры базы данных и её наполнение выполняется внутри контейнера backend-приложения (iq-city-api) с использованием стандартного механизма Laravel.
Процедура включает выполнение команды:
php artisan migrate --seed
Команда выполняется:
· внутри контейнера приложения;
· после успешного запуска контейнеров backend и базы данных;
· с использованием текущих параметров окружения (.env).
В результате выполнения команды:
· создаются все необходимые таблицы базы данных;
· применяются миграции предметной области;
· загружаются системные и справочные данные, необходимые для работы приложения.
[bookmark: _ql9k2igoso0d]4.5.4. Состав загружаемых seed-данных
В рамках выполнения команды php artisan migrate --seed в базу данных загружаются:
· системные справочники;
· перечни направлений и показателей;
· базовые настройки приложения;
· тестовые учетные записи, используемые для демонстрации и экспертной проверки (при наличии).
Seed-данные формируют исходное состояние демо-стенда и обеспечивают воспроизводимость тестовой среды.
[bookmark: _2qokpe8ii96]4.5.5. Контроль успешности выполнения
После выполнения команды внутри контейнера приложения выполняется проверка:
· команда завершилась без ошибок;
· backend-приложение успешно подключается к базе данных;
· отсутствуют ошибки миграций и seed в журналах приложения;
· в интерфейсе приложения отображаются справочные данные.
[bookmark: _4dk3u4cio1gy]4.5.6. Повторное формирование базы данных
При необходимости повторного развертывания демо-стенда:
· том с данными базы (sail-pgsql) может быть удалён;
· контейнеры запускаются повторно;
· команда php artisan migrate --seed выполняется повторно внутри контейнера приложения.
[bookmark: _qggsonbgo7mw]4.5.7. Примечание по демо-данным
Данные, сформированные в рамках seed-процедуры:
· предназначены исключительно для демонстрации;
· могут быть изменены или удалены по завершении экспертной проверки;
· не используются в промышленной эксплуатации.
Принято. Добавляю в тот же документ “Инструкция по установке экземпляра ПО” отдельный раздел про сборку и публикацию фронтенда + фиксирую фактическую nginx-конфигурацию (так же, как с API), с исправлением артефактов ;> и privkey.pe>.
Ниже — готовый блок для вставки.

[bookmark: _vlhpzpb4dyze]5. Frontend: сборка и публикация (Vue 3 + Quasar SPA)
[bookmark: _brefkqkphua2]5.1. Назначение
Frontend представляет собой SPA-приложение на базе Vue 3 + Quasar и публикуется в виде набора статических файлов. Доступ экспертам предоставляется через публичный домен демо-стенда по HTTPS.
[bookmark: _ns3nbrynjf8c]5.2. Сборка фронтенда
Сборка выполняется в окружении демо-стенда с указанием переменной окружения ENV=demo:
ENV=demo quasar build

Результатом сборки является директория статических файлов SPA, предназначенная для публикации web-сервером (Nginx). Для демо-стенда используется каталог сборки:
· app/dist/spa
Примечание: переменная окружения ENV=demo применяется для выбора конфигурации окружения демо-стенда (адреса API, режимы отображения и т.п.) в рамках фронтенд-сборки.
5.3. Проверка публикации фронтенда (чек-лист)
После выполнения сборки ENV=demo quasar build и публикации директорий сборки Nginx’ом необходимо проверить:
1. Доступность по HTTPS
Открытие https://demo.russiasmartcity.ru в браузере без предупреждений о сертификате.
2. Корректность SPA-маршрутизации
Переход по внутренним маршрутам (URL вида /...) должен открываться без ошибки 404 при прямом вводе адреса в браузер (обеспечивается try_files ... /index.html).
3. Подключение к backend API
Frontend должен обращаться к backend (API) по настроенному адресу (для демо-стенда), без ошибок CORS/403/404.
4. Сжатие контента
В ответах Nginx для статических файлов должны присутствовать признаки gzip-сжатия (опциональная проверка).
[bookmark: _h395gwt5zbbh]5.4. Связь frontend ↔ backend в демо-стенде
В демо-стенде используются два публичных домена:
· frontend: https://demo.russiasmartcity.ru
· backend API: https://api.demo.russiasmartcity.ru
Адрес backend API фиксируется на этапе сборки фронтенда (через конфигурацию окружения ENV=demo) и должен соответствовать опубликованному адресу API.
[bookmark: _dyvvwxcyg6y]6. Reverse proxy / Web-server для frontend (Nginx + Certbot)
[bookmark: _feoofoiwc8hl]6.1. Публикуемый домен и схема доступа
· Публичный домен демо-стенда (frontend): demo.russiasmartcity.ru
· Транспорт: HTTPS (порт 443)
· Документ root: /var/www/iq-smart-city/app/dist/spa
· Тип приложения: SPA (маршрутизация на стороне клиента)
[bookmark: _rk8xggj46j3z]6.2. Конфигурация Nginx (HTTPS) — фактический пример
Ниже приведена конфигурация виртуального хоста для публикации SPA по HTTPS, включая gzip-сжатие и корректную обработку маршрутов SPA через try_files:
server {
 server_name demo.russiasmartcity.ru;

 gzip on;
 gzip_min_length 128;
 gzip_proxied any;
 gzip_comp_level 9;
 gzip_types text/css text/javascript text/plain application/javascript application/x-javascript application/json image/svg+xml;

 root /var/www/iq-smart-city/app/dist/spa;
 index index.html;

 location / {
 try_files $uri $uri/ /index.html;
 }

 listen 443 ssl; # managed by Certbot
 ssl_certificate /etc/letsencrypt/live/demo.russiasmartcity.ru/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/demo.russiasmartcity.ru/privkey.pem;
 include /etc/letsencrypt/options-ssl-nginx.conf; # managed by Certbot
 ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem; # managed by Certbot
}

[bookmark: _kabquh0pqei]6.3. Обработка HTTP (порт 80)
Для домена демо-стенда может применяться одна из двух политик:
· 301 редирект на HTTPS (рекомендуется);
· возврат 404 (как в certbot-шаблонах при ограничениях).
Ниже — фактическая логика, где предусмотрен редирект при совпадении host, а в остальных случаях — 404 (вариант допустим, но менее дружелюбен):
server {
 if ($host = demo.russiasmartcity.ru) {
 return 301 https://$host$request_uri;
 } # managed by Certbot

 listen 80;
 server_name demo.russiasmartcity.ru;

 return 404; # managed by Certbot
}
[bookmark: _p3wlm04i8zba]6.4. Назначение reverse proxy
Reverse proxy Nginx используется для публикации backend-экземпляра демо-стенда по HTTPS (TLS-терминация), а также для проксирования запросов во внутренний сервис backend, работающий на localhost:8000.
[bookmark: _grakb5dix6kl]6.5. Публикуемый домен и схема доступа
· Публичный домен API: api.demo.russiasmartcity.ru
· Транспорт: HTTPS (порт 443)
· Маршрутизация: все запросы https://api.demo.russiasmartcity.ru/* проксируются на http://localhost:8000
Примечание: localhost:8000 — это вход на backend через контейнер nginx_web (Docker Compose), опубликованный на хосте по порту 8000.
[bookmark: _m6b84eaj01lh]6.6. Конфигурация Nginx (HTTPS) — фактический пример
Ниже приведён пример конфигурации виртуального хоста Nginx для домена api.demo.russiasmartcity.ru, где TLS-сертификаты управляются Certbot (Let’s Encrypt), а запросы проксируются на backend:
server {
 server_name api.demo.russiasmartcity.ru;

 listen 443 ssl; # managed by Certbot
 ssl_certificate /etc/letsencrypt/live/api.demo.russiasmartcity.ru/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/api.demo.russiasmartcity.ru/privkey.pem;
 include /etc/letsencrypt/options-ssl-nginx.conf; # managed by Certbot
 ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem; # managed by Certbot

 location / {
 proxy_pass http://localhost:8000;
 proxy_set_header Host $server_name;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto https;
 proxy_set_header X-Forwarded-Port 443;
 }
}

[bookmark: _x5f1qf70l7ah]6.7. Обработка HTTP (порт 80)
HTTP (порт 80) используется только как технический вход для Certbot/валидаций и/или переадресации на HTTPS. В демо-стенде применяется конфигурация, создаваемая Certbot.
Важно: в вашем фрагменте второй server блок относится к иному домену (api.stage.iq-smart-city.xologie.ru). В рамках демо-стенда рекомендуется использовать одинаковый домен в 80/443 блоках, чтобы не выглядело как “лишний хвост” в документации для экспертов.
Ниже — корректная версия под api.demo.russiasmartcity.ru (логика остаётся certbot-совместимой):
server {
 listen 80;
 server_name api.demo.russiasmartcity.ru;

 # managed by Certbot
 return 301 https://$host$request_uri;
}

Если по организационным причинам на порту 80 требуется возвращать 404 (как иногда делает certbot-шаблон), можно оставить:
server {
 listen 80;
 server_name api.demo.russiasmartcity.ru;

 # managed by Certbot
 return 404;
}

Рекомендуемый вариант для демо-стенда — 301 редирект на HTTPS: это удобнее для экспертов и снижает число “почему не открывается по http” вопросов.
[bookmark: _bxh2r8w53kn2]6.8. Минимальные требования безопасности публикации
Для демо-стенда обеспечивается:
· TLS-терминация на Nginx (443);
· передача backend корректных заголовков X-Forwarded-*;
· отсутствие прямой внешней публикации СУБД (PostgreSQL/PostGIS).
[bookmark: _wnkq68z3mze9]6.9. Проверка после настройки reverse proxy (чек)
1. Проверить, что DNS домена указывает на внешний IP демо-стенда.
2. Проверить, что сертификат установлен и валиден:
открытие https://api.demo.russiasmartcity.ru в браузере без предупреждений.
3. Проверить проксирование на backend:
запросы к корню/эндпоинтам возвращают ответ сервиса (не 502/504).
4. Проверить, что http://api.demo.russiasmartcity.ru корректно обрабатывается (301 → https или 404 — в зависимости от принятой политики).

[bookmark: _lh977igjuwff]7. Порядок обновления демо-стенда
[bookmark: _7prxbbtzny0f]7.1. Назначение раздела
Данный раздел описывает порядок обновления программного обеспечения демо-стенда разработчиком и предназначен для подтверждения того, что:
· ПО сопровождается;
· возможны исправления и обновления в период эксплуатации;
· обновление не требует вмешательства экспертов или заказчика.
[bookmark: _b0i2dikysm1r]7.2. Общий порядок обновления backend
Обновление backend-приложения выполняется специалистами разработчика и включает следующие шаги:
1. Получение обновленной версии исходного кода backend.
2. Остановка контейнеров:
· docker compose down
3. Обновление кода приложения (pull из репозитория или замена файлов).
4. Пересборка контейнеров (при необходимости):
· docker compose build
5. Запуск контейнеров:
· docker compose up -d
6. Выполнение миграций базы данных (если требуется).
7. Проверка работоспособности демо-стенда.
Все данные, хранящиеся в базе данных, сохраняются за счёт использования постоянного volume (sail-pgsql).
[bookmark: _75eeumpgtsdg]7.3. Обновление frontend
Обновление frontend-приложения (Vue 3 + Quasar SPA) осуществляется:
· путем пересборки SPA;
· заменой статических файлов, публикуемых reverse proxy или web-сервером frontend.
После обновления frontend:
· очистка кеша браузера со стороны экспертов не требуется;
· новая версия подгружается автоматически при следующем открытии демо-стенда.
[bookmark: _jb6jsq62ol1g]7.4. Ограничения при обновлении
· обновление выполняется в регламентное время;
· кратковременная недоступность демо-стенда допустима;
· данные, введённые в демо-стенд, не предназначены для промышленной эксплуатации и могут быть очищены по завершении экспертной проверки.
[bookmark: _2stbvnbjs07i]8. Управление конфигурацией и переменными окружения
[bookmark: _l6xgf6ozn091]8.1. Переменные окружения backend
Backend-приложение использует конфигурацию через переменные окружения (.env), включая:
· параметры подключения к базе данных;
· режим работы приложения;
· параметры безопасности и доступа.
Файл .env:
· не публикуется;
· хранится только на сервере демо-стенда;
· доступен ограниченному кругу специалистов разработчика.
[bookmark: _e26pq8w8oiux]8.2. Конфигурация reverse proxy
Конфигурационные файлы Nginx:
· хранятся на сервере демо-стенда;
· изменяются только администраторами инфраструктуры;
· резервируются в рамках стандартных процедур администрирования.
[bookmark: _dvg1gih6ktuq]9. Журналирование и диагностика
[bookmark: _4jp7cyi3wyhu]9.1. Логи backend
Backend-приложение ведет журналы:
· ошибок выполнения;
· запросов (в объеме, необходимом для диагностики).
Логи используются:
· для анализа инцидентов;
· для устранения ошибок;
· для контроля стабильности работы демо-стенда.
[bookmark: _cipeanwv0xfy]9.2. Логи reverse proxy
Reverse proxy Nginx ведет:
· access.log — факты обращений;
· error.log — ошибки обработки запросов.
Журналы доступны только администраторам демо-стенда.
[bookmark: _xq7dfv6erlop]10. Контроль готовности демо-стенда к экспертной проверке
Перед предоставлением доступа экспертам проверяется:
· демо-стенд доступен по адресу
https://demo.russiasmartcity.ru
· TLS-сертификат валиден и не вызывает предупреждений браузера;
· backend и frontend корректно взаимодействуют;
· отсутствует прямой доступ к базе данных;
· учетные записи экспертов созданы и проверены;
· базовые сценарии работы выполняются без ошибок.
[bookmark: _z3r4rwti2ex3]11. Заключительные положения
Экземпляр программного обеспечения, предоставляемый для проведения экспертной проверки:
· развернут разработчиком централизованно;
· функционирует в изолированной серверной среде;
· предоставляется экспертам в виде демо-стенда с доступом по HTTPS;
· не требует установки или настройки на стороне экспертов.
Данная инструкция подтверждает воспроизводимость установки и настройки программного обеспечения и предназначена для использования в составе заявочной документации.

